Vasoactive agents in liver transplant anesthesia: hemodynamic optimization tactics

Alexander A. Vitin, MD, Ph.D
Head, Transplant Anesthesia Division,
University of Washington Medical Center, Seattle, WA, USA
Liver transplantation stats

- Approx. **25,000** liver transplants were conducted globally in 2013
- More than **5,500** liver transplants are performed each year in Europe
- Cirrhosis is the leading cause of adult liver transplants.
- Based on data from the European Liver Transplant Registry, **118,441** liver transplants performed in 28 countries between 1968 and 2014
- 1-year survival: more than 9 out of 10
- 5-year survival: 8 out of 10
- Many recipients living for up to 20 years
Where we are, who we are, what we do

- Level 2 solid organ transplantation program
- UNOS area 6, collecting donor organs from 6 states of USA: WA, OR, ID, MO, AK, HI

- Single organ transplants, per year:
 - heart
 - lungs
 - liver – about 90-100
 - kidney – about 150-170

- Combine organ transplants:
 - liver & kidney – about 10
 - kidney & pancreas about 10-15
 - liver & intestine – 1-2
 - heart & liver – 1
 - lungs & liver – 1
Disclosure

Regretfully, I have nothing to disclose:
- no financial/vested interests
- no conflict of interests

I have interest in research and practice improvement only
Presentation outline

- Hemodynamic regulation in the End-Stage Liver Disease patient
- Factors contributing to the hemodynamic profile
- Hemodynamic optimization: what, when, and how to correct
- Vaso-active agents use
Anesthesia setup I

Monitoring:

Routine: ECG, Non-invasive BP, Pulse oxymetry; arterial line (1 or 2)

PA (Swan-Ganz) catheter: CO, CI, SVR, SvO₂

TEE

Bi-spherical Index (BIS)

Thrombo-elastography: PT/PPT, INR, PLT and more
Anesthesia setup II

Vascular access and volume management

Large-bore triple-lumen catheter/PA introducer in IJ

Belmont® rapid infusion pump

Maintenance

Isoflurane

Fentanyl continuous infusion, 3-5 mcg/kg/h

Cis-Atracurium infusion, 0.8-1 mcg/kg/min
Hemodynamic goals

- MAP: 75-85 mmHg
- HR: <100/min
- CVP: < 20 mmHg
- MPAP: < 25 mmHg
- CO/Cl: >4 L/min / >2 L/min*m²
- SVR: > 500 dynes / sec / cm⁻⁵
- Mixed Venous SvO2: >75%
Vasomotor tone regulation in ESLD: vasoplegia

- Cardiovascular response to catecholamines is substantially attenuated in ESLD patients
- Sensitivity of β-adrenoreceptors is relatively decreased
- Plasma free norepinephrine and epinephrine levels are significantly higher
- Fraction of epinephrine contributing to total catecholamines increased up to 50% (normal: about 17%)
- Dopamine concentration is unchanged
- As a result, **systemic vasoplegia** due to low SVR is typical for ESLD
Hepatic Blood Flow: Impact of Anesthesia-related factors

Increase:
- Dopamine, (3mcg/kg/min)
- Hypercapnia
- Acidosis
- Hypoxemia (+/-)

Decrease:
- PPV (+PEEP)
- β - blockers, α - agonists, H₂ blockers
- Hypocapnia
- Alkalosis
- Hyperglycemia

- All anesthetic techniques in the absence of surgical stimulation decrease HBF by 30%.
- Isoflurane, Sevoflurane and Desflurane maintain HBF
- Fentanyl has no effect on HBF
Dissection phase

- Drop of intra-abdominal pressure
- Laparotomy ascites evacuation
- Rapid splanchnic volume increase (mesenteric blood pooling)
- Decrease of venous return
- Blood loss, fluid shift, acidosis
- CO/CI and MABP decrease
Anhepatic phase: Portal and Caval cross-clamp

- Portal clamp: drop of venous return is variable (loss of 20-30% of baseline venous return)
- With developed porto-caval collaterals (long-standing portal hypertension) – loss of 15 to 20% of pre-clamp venous return
- IVC complete clamp: approximately 50% decrease of venous return
- IVC partial clamp: variable, 25 - 50% decrease of venous return
Veno-venous bypass (VVB)

- VVB provides flow rates ranged from 1.5 to 3.6 L/min
- VVB is advocated in cases:
 - total IVC clamp
 - 30% drop in MABP
 - 50% decrease in CI during 5 min test- IVC cross-clamping period
Veno-venous bypass: pro’ and contra’

Pros:
- Preserving the CO/CI, maintaining hemodynamic stability
- Maintaining CBF, especially in FHF cases
- Maintaining the RBF and kidney function (?)
- Longer anhepatic phase
- Blood loss reduction (?)
- Improving the clinical outcome (?)
- Lower lactate

Cons:
- Pulmonary air emboli, thrombosis
- No evidence of maintaining normal perfusion of abdominal organs and preserving renal function
- Longer operative and warm ischemia time
- Higher rate of post-reperfusion syndrome
- Increasing bleeding
- No evidence for improving the clinical outcome
- Higher procedure cost
Liver graft reperfusion

Myocardial injury: arrhythmias, asystolic arrest

Vasoplegia

Decrease of CO/CI, SVR and MABP

Temperature drop

Decreased sensitivity to catecholamines / vasoactive agents

lactic acidosis

Hemodilution

Blood loss

Anemia, hypovolemia

RV overload; PAP and CVP increase

Factors deficit + consumption, Hemodilution

Fibrinolysis
Post-reperfusion syndrome

- PRS is defined as a:
 - > 30% of MABP decrease from that in the anhepatic stage,
 - for longer than for 1 min, during the first 5 min after reperfusion of the liver graft.
Lactic Acidosis in ESLD may be beneficial!

- Decreased synthesis of hepatic pyruvate dehydrogenase, hence impaired lactate – to – bicarbonate conversion
- Acidosis itself decreases lactate clearance
- Severe LA (lactate > 5 mEq/l) is associated with mortality rates 50-56%
- Short duration acidosis prevents anoxic cell death, and reoxygenation at low pH prevents cell toxicity
- Reperfusion at low pH blocks increase of mitochondrial membrane permeability, which allows mitochondrial re-polarization and prevents cell death

However,
Lactate during liver transplant

Vitin A. et al., 2010
Porto-pulmonary syndrome

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPAP</td>
<td>>25 mmHg at rest</td>
</tr>
<tr>
<td></td>
<td>>30 mmHg with exercise/stress</td>
</tr>
<tr>
<td>PCWP</td>
<td><15 mmHg</td>
</tr>
<tr>
<td>PVR</td>
<td>>120 dynes/sec/cm(^5)</td>
</tr>
<tr>
<td>Trans-pulmonary gradient</td>
<td>> 10 mmHg</td>
</tr>
</tbody>
</table>
Intra-operative Pulm HTN management

- Fluid restriction (especially crystalloids)
- Diuretics (Furosemide, not Mannitol)
- Nitroglycerine infusion, 1-1.5 mcg/kg/min
- Epoprostenol, 2-12 mcg/kg/min
- CVVH / hemodialysis
- Nitric Oxide inhalation 20-25 ppm
- **Vasopressin** decreases PAP while maintaining systemic MABP
Blood loss: predisposing factors

1. MELD score >25
2. Portal hypertension
3. Pre-existing + ongoing consumption & dilution coagulopathy
4. Long, traumatic liver dissection
5. “Hostile abdomen” – s/p laparotomy
6. Re-do OLT
7. Long ischemia times
8. Aged/marginal quality donor organ
9. Donor-recipient organ size discrepancy
Hemotransfusion during OLT

• Different surgical techniques, anesthesia protocols, transfusion triggers and institutional practices

• RBCs use: 10 y. ago – 20 units, currently: 1-5 to 0 (average)

• Modern trends: restriction of RBCs and other blood products use to absolutely necessary minimum; use of Cell Saver

• Massive RBCs, FFP and PLT transfusions are independent predictors of negative impact on recipient and graft survival
Ways of blood loss reduction

1. Piggy-back technique with IVC preservation – partial IVC clamp
2. Maintaining the low CVP (controversial)
3. Minimum hemodilution: limit crystalloids infusion
4. Vasoactive agents use
“Low CVP” paradigm I

To maintain CVP around 5-7 mmHg:

- crystalloid, colloid and blood products volume restrictions,
- diuretics,
- Nitroglycerine
- Anti-Trendelenburg position
“Low CVP” paradigm II

Pro:

• potential for blood loss decrease
• lowered transfusion requirements
• oxygen delivery improvement to the liver graft by creating a greater MABP/CVP gradient

Contra:

• Increased post-op renal failure
• Increased 30-days mortality
• increased dosage of vasopressors - > peripheral vasoconstriction
• promoting metabolic acidosis

“CVP decrease should be avoided in liver transplant patients” (Ozier Y et al., 2008)
Vasoactive agents use

- **Routine use** (doses in mcg/kg/min):
 - Phenylephrine, 0.01 – 1.5
 - Norepinephrine, 0.01-0.5

- **Optional**:
 - Epinephrine, 0.01 – 0.05
 - Dopamine, 3
 - Vasopressin, 0.04 U/min
Can we do five treatments at a time and speed up this process?

I was just passing by looking for mice.
Vasopressin

- Increases SVR, decreases MPAP, normalizes CO/CI, and, potentially, CVP.
- Maintains mean BP
- Decreases portal pressure, HBF and SBF
- Improves impaired renal function, enhances diuresis, thus improves Na balance and lactate elimination
- Enhances platelet aggregation and increases levels of Pro- factor VIII and von Willebrand factor
- Does not promote lactic acidosis
- *Seems to be able to decrease blood loss during pre- and anhepatic phases of OLT*
Vasoactive agents timing/dosage during OLT

Phenylephrine
- 0.2-0.4

Epinephrine
- 0.1-0.2

Norepinephrine
- 0.6-1

Epinephrine
- 0.01-0.03

Dopamine 3

Vasopressin
- 0.04 U

Norepinephrine
- 0.01-0.5

Epinephrine
- 1-1.5

Vasopressin
- 1-2 U

Nitroglycerin
- 1-1.5

CaCl₂ 1-2g;
Phenylephrine 100-500ug
Ephedrine 10-15 mg
Epinephrine 0.1-1mg
Vasopressin 1-2 U
Methylene blue 1-1.5 mcg/kg
Sodium bicarbonate
Circulatory pathophysiology and options in hemodynamic management during adult liver transplantation.

Mandell MS, Katz JJ, Wachs M, Gill E, Kam I.
Department of Anesthesiology, University of Colorado, Health Science Center, Denver 80262, USA.
Hemodynamic effects of low-dose vasopressin vs phenylephrine

Vasopressin vs phenylephrine & epinephrine effect on blood loss

- The EBL before liver graft reperfusion 50.2% lower ($p=0.0094$) and TBL 38.8% lower ($p=0.0548$), than in control (Phenyl/Epinephrine) group (Vitin A et al., 2010)
Conclusions

- Phenylephrine may be a first choice
- Vasopressin may be used during dissection and anhepatic stages; use after reperfusion remains controversial.
- Epinephrine may be used throughout, but should be discontinued ASAP
- Albeit efficient, Norepinephrine appears to be the less suitable drug
- Nitroglycerine may be effective for post-reperfusion PAP surge correction
Questions?

Thanks for attention!
Welcome to Seattle!