

Course n°: *(ex: Course 6)* Sub-category: *(ex: 6.4.)* Date: *(9-12-2015)* Language:English/Romanian City:Bucharest Country:Romania Speaker: *(Radu T. Stoica)*

www.euroviane.net

INSTITUTUL DE PNEUMOFTIZIOLOGIE MARIUS NASTA

SOS. VIILOR NR.90 SECTOR 5 - BUCURESTI RO 75239 TEL: 021.335.69.10 FAX: 021.337.38.01 EMAIL: secretariat@marius-nasta.ro WEB: www.marius-nasta.ro

Dificulties in Pediatric Thoracic Anesthesia

Dr. Radu T. Stoica Thoracic Anesthesia and Respiratory ICU

Why is so difficult?

Because babies don't come with owner's manuals.

Pediatric Vitals

	RR	HR	BP	KG 3–5	
Newborn	30-60	100-160	60-80		
6 mos	25-40	90-120	80-100	7	
1 yr	20-30	90-120	80-100	10	
18 mos	20-30	80-120	80-110	12	
3 yrs	20-30	80-120	0-120 80-110		
5 yrs	18-24	70-110	80-110	20	
6 yrs	18-24	80-100	80-110	20	
8 yrs	18-24	70-110	80-110	25	
10 yrs	16-20	70-110	90-120	30	
12 yrs	16-20	60-110	90-120	40	
14 yrs	16-20	60-105	90-120	50	
16 yrs	16-20	60-80	80-120	60	
18 yrs	16-20	60-80	80-120	70	

Anathomy

Physiology

- High metabolic rate (5-8 mlO₂/kg/min) (2-3ml/kg/min adult)
- Tidal volume (6-7 ml/kg/min)
- High respiratory rate (40-60 breaths/min)
- High alveolar ventilation (130 ml/kg/min)
- Lung compliance is less while chest wall compliance is more than those in adults (reduced FRC and atelectasis) ▶PEEP.
- Diaphragm has less oxidative type I fibers ► susceptible for fatigue.
- The work of breathing is composed of compliance and resistive components. The compliance work relative to tidal volume is nearly the same as in adult. The resistive work increases when breathing through ETT (4th radius), and through circle system.

Preoperative assessment

- Clinical status of the child: underlying acute or chronic conditions that may impact the perioperative course
- Infants have less specific signs: poor feeding, irritability, or change in sleep habits
- Older children: dyspnea, cyanosis, wheezing, coughing, weight loss
- If history of previous surgery: the perioperative course
- Thoracic examination: asymmetric expansion and use of accessory muscles. auscultate for wheezes, rales, rhonchi, and absent breath sounds
- Pulsoximetry
- Venous HCO₃, elevated in children with chronic CO₂

Golianu B, Hammer GB, Pediatric thoracic anesthesia, Current Opinion in Anaesthesiology 2005,

Preparing for anesthesia...

Airway Equipment

Suction catheters

Oral airways

Face masks

Breathing circuit

Miller 0, 1, blades and handles

Uncuffed endotracheal tubes 2.5, 3.0, 3.5, 4.0

Stylet

Environment

Room temperature (80°-85°F)

Underbody warm air delivery device

Warming blanket

Circuit humidifier

Intravenous fluid warmer

Agents

Gases Air/oxygen/nitrous oxide Volatile anesthetics Intravenous anesthetics Propofol Thiopental

Ketamine

Muscle relaxants Succinylcholine Cisatracurium Vecuronium Rocuronium Pancuronium Narcotics Remifentinal Fentanyl Morphine Local anesthetics Lidocaine (1%) Tetracaine (1.0%) Bupivacaine (0.25%) Emergency drugs: Atropine Epinephrine (1:10,000) Dopamine Calcium Bicarbonate Isoproterenol

Intravenous Fluids

Lactated Ringer's D10W

Normal saline

5% albumin

CEEA Equipment for lung separation Thoracothomy and VATS

- Single Lumen Endotracheal Tube (ETT), cuffed or uncuffed

intubate a mainstem bronchus

- Balloon-Tipped Bronchial Blockers
- Univent Tube
- Double Lumen Tubes (DLT)

Verify with FOB

Single lumen

Univent

Double lumen

Bronchial Blockers

CEEA Tube selection for single lung ventilation in children

Age	ETT (ID)	BB (Fr)	Univ	ent (ID)	DLT
0.5–1	3.5–4.0	2–3			
1–2	4.0-4.5	3			
2–4	4.5-5.0	5			
4–6	5.0-5.5	5			
6-8	5.5-6	5	3.5		
8–10	6.0 cuffed	5	3.5	26	
10–12	6.5 cuffed	5	4.5	26–28	
12–14	6.5–7.0 cuffed	7	4.5	32	
14–16	7.0 cuffed	7	6.0	35	
16–18	8.0–8.5 cuffed	7–9	7.0	35	

Golianu B, Hammer GB, Pediatric thoracic anesthesia, Current Opinion in Anaesthesiology

General anesthesia

- Monitoring vital signs <u>+</u> Transcutaneous CO₂ monitoring
- Induction of anesthesia: intravenous catheter, and tracheal intubation, arterial catheterization for most patients undergoing thoracotomy as well as those with severe lung disease having thoracoscopic surgery
- Combination of general anesthesia with regional anesthesia and postoperative analgesia is particularly desirable for thoracotomy

Ishibe Y, et al. The effect of thoracic epidural anesthesia on hypoxic pulmonary vasoconstriction in dogs: an analysis of the pressure-flow volume curve. Anesth Analg 1996; 82:1049–1055

 General anesthesia: Inhalation an iv anesthesia. Not important interference with HPV. Muscle relaxants
 Frequent 100% FiO₂

CEEA Physiology of one-lung ventilation

 Adults: oxygenation is optimal in lateral decubitus with the healthy lung "dependent" due to increased blood flow (gravitational and HPV)

BETTER V/Q MACH

- Infants: FRC is closer to residual volume. Airway closure likely to occur in the dependent lung even during tidal breathing. Soft, easily compressible rib cage an lower abdominal pressure WORST VENTILATION

Low hydrostatic pressure gradient between the nondependent and dependent lung. WORST CIRCULATION WORST V/Q MACH

Pain assessment

Thoracic epidural

- Thoracic epidural placement in infants and young children should be restricted to those experienced in the technique.
- The procedure should be abandoned if difficulties are encountered.
- In children 2–10 yr of age, the mean distance of the spinal cord from the dura at T9–10 vertebral level is 4.3 mm.
- The thoracic vertebral spines are almost horizontal, which allows a midline approach to the thoracic epidural space. A paramedian approach is often required in adolescents.
- In neonates and infants, catheters can be easily and consistently threaded to higher segmental levels from lower approaches. Insertion at a lumbar level is often possible and safer in infants compared with a direct thoracic approach.

D. Patel, Epidural analgesia for children, Contin Educ Anaesth Crit Care Pain (2006) 6 (2): 63-66.

63 children: 3 months to 18 yr and in weight from 3.2 kg to 78 kg

- Intravascular placement was excluded using a test dose that consisted of 1 to 3 ml bupivacaine 0.25% with epinephrine (1:200,000).
- Postoperative analgesia was provided by an initial bolus of 0.2 to 0.3 ml. kg - of bupivacaine 0.25% with 0.5 to 1.0 microg/kg ⁻¹ fentanyl followed by a continuous infusion of bupivacaine 0.1% to 0.125% with 2 microg/ml fentanyl.

Tobias JD, Lowe S, Thoracic epidural anesthesia in infants and children, 1993 Can J Anaesth, 40:872-882 anosh A at al. Efficacy of addition of fontanyl to opidural hunivacaino on postoporativo analogsia

Ganesh A et al, Efficacy of addition of fentanyl to epidural bupivacaine on postoperative analgesia after thoracotomy for lung resection in infantsAnesthesiology. 2008;109:890-894.

Thoracic epidural

HAMMER ANESTH ANALG PEDIATRIC THORACIC ANESTHESIA 2001;92:1449–64

Author	Indication	Age (yr)	Epidural solution	Infusion rate
Gunter (129)	thoracic/abdominal surgery	1-10	Bupiv 0.125% + Epi 1:200,000	0.15 mL · kg ⁻¹ · h ⁻¹
Cassidy et al. (128)	spinal fusion	11 - 18	Bupiv 0.125% + Fent 0.025 mg/mL	$0.28 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}$
Hammer et al. (127)	cardiac surgery	1–6	Bupiv 0.1% + HM .003 mg/mL	$0.30 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}$
Tobias et al. (130) 🌔	thoracic surgery	.25–18	Bupiv 0.1% + Fent .017025 mg/mL	$0.30 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{h}^{-1}$

Bupiv = bupivacaine; Epi = epinephrine; Fent = fentanyl; HM = hydromorphone.

Thoracic Paravertebral

-Positioning. Sitting or lateral decubitus.

-Landmarks. Spinous process. Needle insertion point is 1 to 2 cm lateral to the superior aspect of he spinous process.

-Technique.Use a 22-guage Tuohy needle. The insertion point: 0.5 to 1cm past the transverse process. Estimated depth: paravertebral space: 20 + (0.5 × wt [kg]) = depth in mm

CEEA Thoracic surgery pathology

- Lesions of the trachea and bronchi

Aquired

Congenital

- Lung parenchyma

Pulmonary sequestrations (childhood or adult), Extralobar sequestration (< 2years old), Pulmonary hypoplasia, Congenital lobar emphysema, Bronchogenic cysts, Dermoid cysts, Cystic adenomatoid malformations, Metastasis

- Esophagus

Tracheoesophageal fistula (TEF), Esophageal atresia

- Mediastinal (childhood)

Limphomas, Neuroblastomas

- Diaphragm

Hernias

Tracheal surgery

FOB is used to evaluate the severity of the stenosis
 General anesthesia with spontaneous breathing, Local anesthesia on vocal cords

- 2. ETI, LAM, Rigid bronhoscopy for ventilation
- **3.** Cricoid split procedure or laryngotracheoplasty (rib, auricular), stent
- 4. ETT (half size than tracheoscope) left in place
- 5. May require **postoperative ventilation** for a period of time
- 6. Rarely, repair of distal tracheal and bronchial stenosis may require **cardiopulmonary bypass**.

Anterior mediastinal mass (AMM)

Danger of respiratory/circulatory colaps at induction!

©CEEA

Anterior mediastinal mass

Preparing General Anesthesia

- Devices and skilled personel!

Rigid bronchoscope, FOB available Prepared for tracheostomy

Consider changing patient position
 Head elevated
 Lateral decubitus with CPAP for maintaining FRC

- Anesthesia:

Adequate IV lane

Mask induction with spontaneous breathing

Intubation without muscle relaxant or succinylcholine

LMA if possible for biopsy of AMM!

Large and symptomatic AMM may need ECMO or CPB

- ICU bed available!

Hammer GB Anaesthetic management of children with anterior mediastinal masses, Anaesthesia,

Foreign body

- Degree of emergency: tracheal or respiratory distress
 Urgent FOB or rigid bronchoscopy in OR
- Rigid bronchoscopy in most cases!
- Anesthesia induction:
- under the fear of foreign body relocation!
- Spontaneos breathing: cough!
- **IPPV: distal dislogement!**

under the fear of gastric aspiration in emergency cases!

- i.v general anesthesia anesthesia during the procedure
- Lateral port ventilation or HFJV
- If spontanos ventilation is chosen: + topical anestesia on vocal cords

Fidkowski CW, et al, The Anesthetic Considerations of Tracheobronchial Foreign Bodies in Children: A Literature Review of 12,979 Cases Anesth Analg 2010;111:1016-1025

Conclusions...

- Knowledge of respiratory physiology and anatomy in pediatric patients
- Devices and skills: special size FOB, Bronchial blockers, LM, one-lung ventilation
- Use of regional anesthetic techniques
- Anesthetic management in specific conditions: anterior mediastinal mass, foreign body

Children are totaly different!

