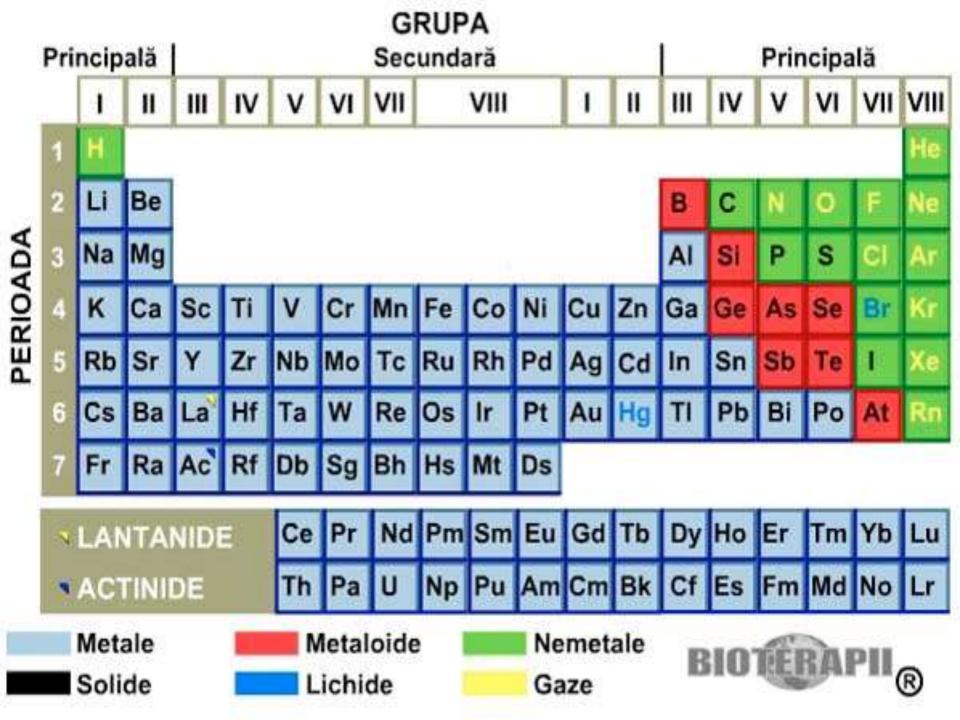
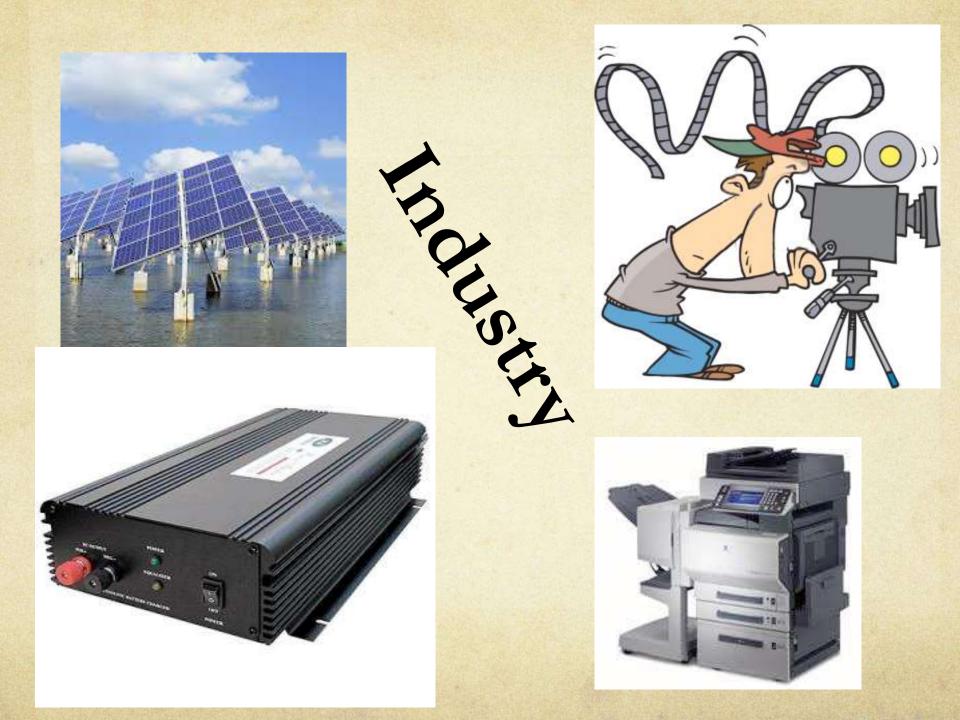
Selenium -

rol in organism


M.Păpurică UMF "Victor Babes" Timisoara


Selenium in intensive care ?

Probably not a magic bullet but an important adjuvant therapy

Critical Care Medicine: January 2007 - Volume 35 - Issue 1 - pp 306-307 doi: 10.1097/01.CCM.0000251943.86292.87 Berger, Mette M. MD, PhD; Shenkin, Alan MD, PhD

Human

Incorporated in selenocompounds - small molecular weight that influence human health.

Micronutrients

Called *micronutrients* because they are needed only in **minuscule amounts**, these substances are the **"magic wands"** that enable the body to produce enzymes, hormones and other substances essential for proper growth and development

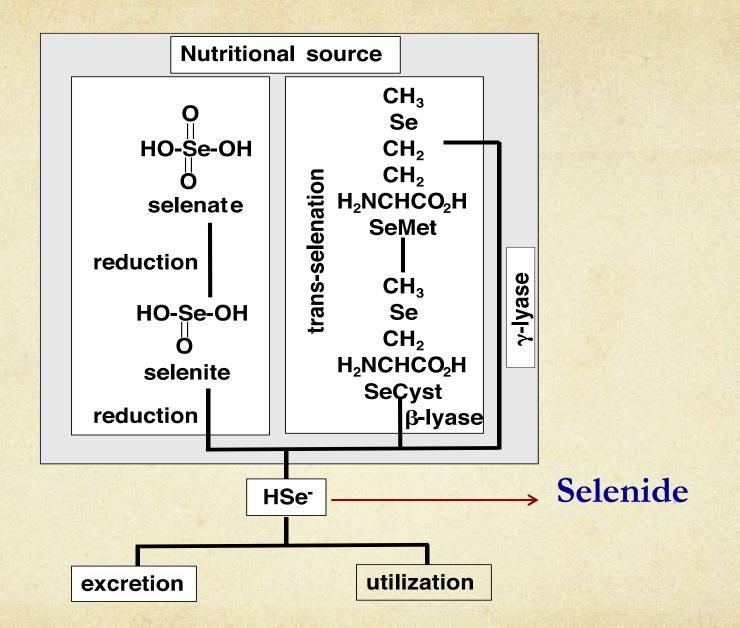
> Microminerals (trace elements) Vitamins

Essential micronutrients

	Trace elements	Vitamins
	Cu	A Retinol
	Se	D Cholecalciferol
	Zn	E Alpha-tocopherol K
		Phyloquinone B1 Thiamin
	Fe	B2 Riboflavin
+	Mn	B3 Niacin(PP)
	Mo	B5 Pantothenic acid B6
	Cr	Pyridoxine
•	F	B8 Biotine(H)
	т	B9 Folic acid
	L Co	B12 Cobalamin
		C Ascorbic acid

Fores Nillsen, New esential trace elements for the life sience, Bilogical Trace Element Research, 1989, 599-611

Forms


Inorganic forms

metallic forms
 oxyanions - selenite SeO(OH)₂
 selenate SeO₂(OH)₂

Organic forms

selenocisteina SeCysseleomethionine SeMet

Suzuki, K. T. and Ogra, Y. (2002) Metabolic pathway for selenium in the body: Speciation by HPLC-ICP MS with use of enriched Se. *Food Addit.Contam.*, **19**, 974–983

Kazuo T. Suzuki Metabolomics of Selenium: Se Metabolites Based on Speciation Studies Journal of Health Science, 51(2) 107–114 (2005)

Sourses of Selenium

- SeCys is present in plants and animals (vegetables and meats in foods)
- SeMet in general proteins in foods (vegetables and meats)
- selenite and selenate in drinking water and foods

Ogra, Y., Ishiwata, K., Encinar, J. R., Lobinski, R. and Suzuki, K. T. (2004) Speciation of selenium in selenium-enriched shiitake mushroom, *Lentinula edodes*. Anal. Bioanal. Chem., **379**, 861–866.

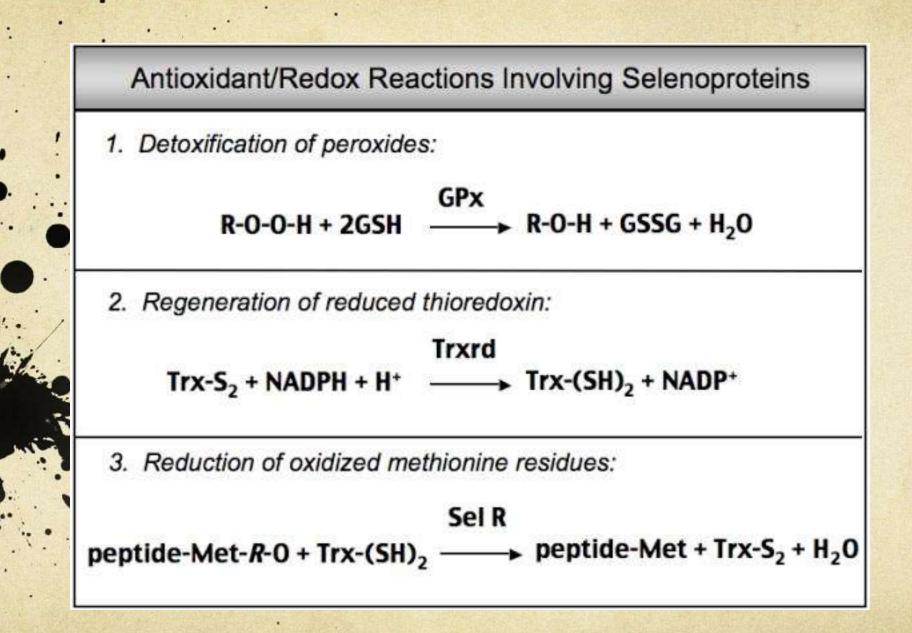
Sourses of Selenium

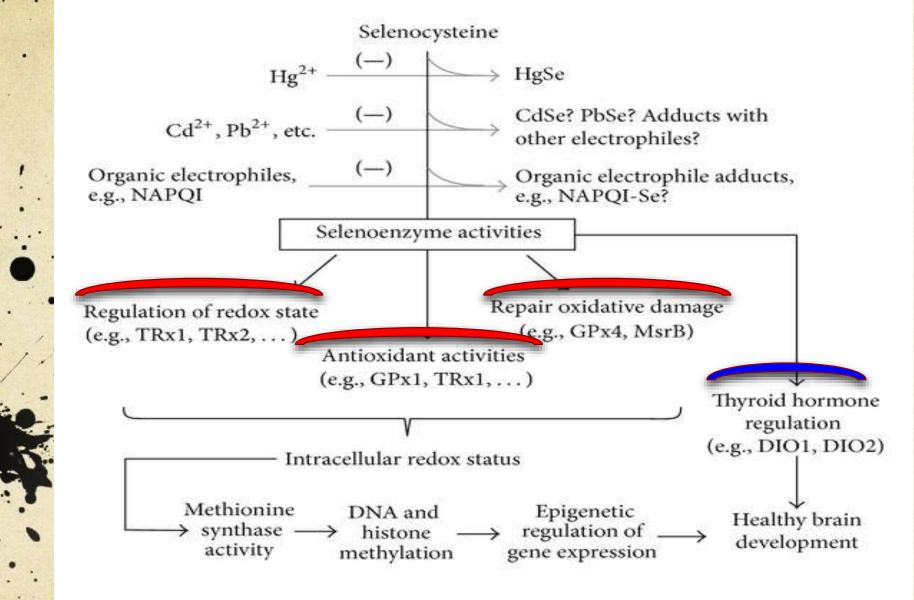
Selenium accumulators

selenite-accumulators (broccoli and cucumber),

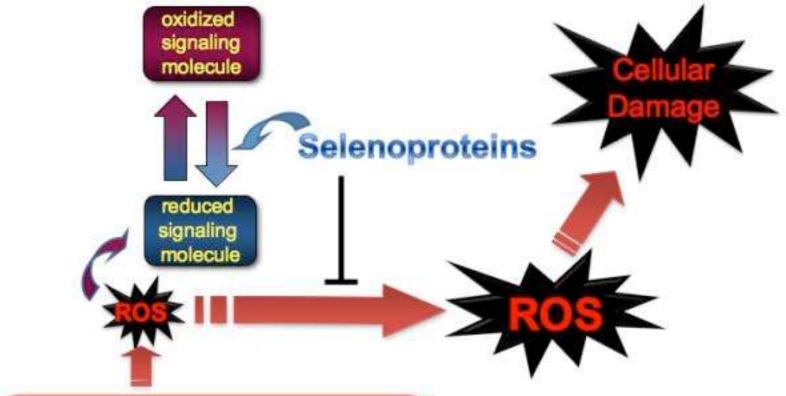
SeMet-accumulators (grains such as wheat, and mushroom)

MeSeCys-accumulators (garlic and onion)


Ogra, Y., Ishiwata, K., Encinar, J. R., Lobinski, R. and Suzuki, K. T. (2004) Speciation of selenium in selenium-enriched shiitake mushroom, *Lentinula edodes*. *Anal. Bioanal. Chem.*, **379**, 861–866.



Human active forms


- Glutation peroxidaza (GPx)
 Thioredoxin reductaza
 Thyroid hormone deiodinase
- Selenoproteins

<u>Autism Res Treat.</u> 2014;2014:164938. doi: 10.1155/2014/164938. Epub 2014 Mar 5.

Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. <u>Raymond LJ</u>, <u>Deth RC</u>, <u>Ralston NV</u>

Reactive Oxygen Species (ROS) produced by: mitochondrial oxidative phosphorylation, NADH/NADPH oxidase, P-450 monooxygenase, lipoxygenase, cyclooxygenase, xanthine oxidase, and others.

Autism Res Treat. 2014;2014:164938. doi: 10.1155/2014/164938. Epub 2014 Mar 5. Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. Raymond LJ, Deth RC, Ralston NV

Role in the body

Sepsis, septic shock¹
 Antioxidant •
 Decreased the risk of lung, colorectal, and prostate cancers^{2,3}
 Antitoxic (Pb. Hg, Ar)
 Imunomodulator

1. Matthias W. A. Angstwurm, Selenium in ICU SIRS – sepsis patients, Crit Care Med 2007 Vol. 35, No. 1

2. Taylor PR, Albanes D. Selenium, vitamin E, and prostate cancer--ready for prime time? J. Natl. Cancer Inst 1998;90:1184–1185.
 3. Clark LC, Combs GF Jr. Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr. Park HK, Sanders BB Jr. Smith CL, Taylor JR. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996;276:1957–1963.

Role in the body

Alfa 1 antitripsina deficiency ¹
 Autism²
 Masculin infertility
 Regulate thyroid hormone synthesis
 Cardioprotection in cardiomyopathyc disease

^{1.} Catherine M. Greene et all., s There a Therapeutic Role for Selenium in Alpha-1 Antitrypsin Deficiency? Nutrients 2013, 5, 758-770

^{2.} Laura J. Raymond et all., Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology Autism Research and Treatment, volume 2014, Article ID 164938, 15 pages

Main actors

- usheen.com
- -Glutathione Peroxidases (GPx1-6)
- Thioredoxin Reductases
- Deiodinases
- Selenoprotein (H W)
- Selenophosphate-synthetase 2

Glutathione Peroxidases (GPx1)

- the most abundant and ubiquitously expressed selenoproteins
- highly sensitive to changes in Se status
- oxidative stress has been shown to reduce levels of GPx1
- GPx1 recovers most rapidly
- role for GPx1 in cancer prevention
- plays an important role in protecting against neurodegenerative diseases

Glutathione Peroxidases (GPx1)

slightly higher risk of type-2 diabetes in Se supplemented humans as described above as well as the strong correlation found between increased erythrocyte GPx1 activity and insulin resistance in gestational diabetic women

Chen X, Scholl TO, Leskiw MJ, Donaldson MR, Stein TP. Association of glutathione peroxidase activity with insulin resistance and dietary fat intake during normal pregnancy. J. Clin. Endocrinol. Metab 2003;88:5963–5968.

Glutathione Peroxidases (GPx2)

- expressed in the gastrointestinal tract, in liver
- protect intestinal epithelium from oxidative stress
- GPx2 is upregulated in cancers of gastrointestinal tract (1)

A recent study show that lower expression of GPx2 increased migration and invasion of cancer cell clones, but decreased their growth (2)

1.Serewko MM, Popa C, Dahler AL, Smith L, Strutton GM, Coman W, Dicker AJ, Saunders NA. Alterations in gene expression and activity during squamous cell carcinoma development. Cancer Res 2002;62:3759–3765.

2. Banning A, Kipp A, Schmitmeier S, Lowinger M, Florian S, Krehl S, Thalmann S, Thierbach R, Steinberg P, Brigelius-Flohe R. Glutathione Peroxidase 2 Inhibits Cyclooxygenase-2-Mediated Migration and Invasion of HT-29 Adenocarcinoma Cells but Supports Their Growth as Tumors in Nude Mice. Cancer Res 2008;68:9746–9753

Glutathione Peroxidases (GPx3)

source of GPx3 in plasma is the kidney

- decreased GPx3 activity led to platelet hyper- reactivity and an increased risk of thrombosis [2]
- GPx3 and Sel P role for this selenoprotein in modulating NO concentration or other aspects of the vascular environment.

affects susceptibility to stroke or other cardiovascular disorders [3]

1Yoshimura S, Watanabe K, Suemizu H, Onozawa T, Mizoguchi J, Tsuda K, Hatta H, Moriuchi T. Tissue specific expression of the plasma glutathione peroxidase gene in rat kidney. J. Biochem 1991;109:918–923.

2. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J. Clin. Invest 1996;97:979–987.

3. Kenet G, Freedman J, Shenkman B, Regina E, Brok-Simoni F, Holzman F, Vavva F, Brand N, Michelson A, Trolliet M, Loscalzo J, Inbal A. Plasma glutathione peroxidase deficiency and platelet insensitivity to nitric oxide in children with familial stroke. Arterioscler. Thromb. Vasc. Biol 1999;19:2017–2023.

Glutathione Peroxidases (GPx4)

- subcellular localization between cytosol, nuclear, and mitochondria[1]
- protective role (reversing oxidation of lipid peroxides)
- involved in metabolism of lipids (arachidonic acid and linoleic acid) [2]
- contribute to the pathogenesis of Parkinson Disease or Alzheimer's Disease [3]
- protective role in cardiovascular disease (decreasing lipid peroxidation and inhibiting the sensitivity of vascular cells to oxidized lipids) [4]
 - associated with infertility [5]

>

¹Conrad M, Schneider M, Seiler A, Bornkamm GW. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol. Chem 2007;388:1019–1025.

^{2.} Chen CJ, Huang HS, Chang WC. Depletion of phospholipid hydroperoxide glutathione peroxidase up-regulates arachidonate metabolism by 12S-lipoxygenase and cyclooxygenase 1 in human epidermoid carcinoma A431 cells. FASEB J 2003;17:1694–1696

^{3.} Chen L, Na R, Gu M, Richardson A, Ran Q. Lipid peroxidation up-regulates BACE1 expression in vivo: a possible early event of amyloidogenesis in Alzheimer's disease. J. Neurochem 2008;107:197–207.

⁴ Guo Z, Ran Q, Roberts LJ 2nd, Zhou L, Richardson A, Sharan C, Wu D, Yang H. Suppression of atherogenesis by overexpression of glutathione peroxidase 4 in apolipoprotein E-deficient mice. Free Radic. Biol. Med 2008;44:343–352.

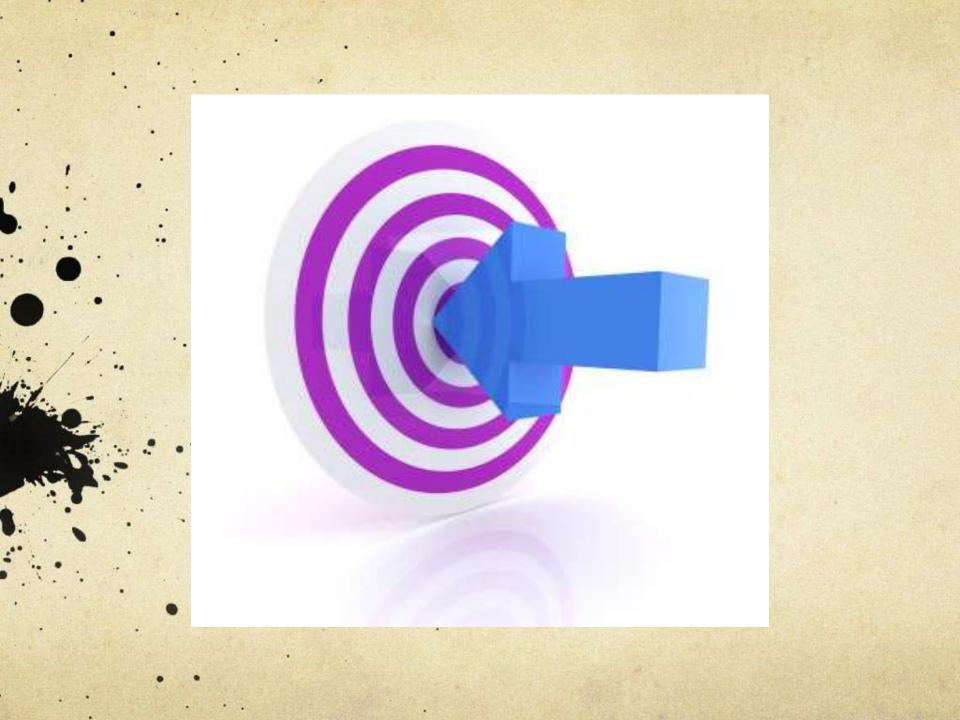
^{5.} Foresta C, Flohe L, Garolla A, Roveri A, Ursini F, Maiorino M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol. Reprod 2002;67:967–971.

Thioredoxin Reductases (Trx)

- catalyze the reduction of oxidized thioredoxin (1)
- exists in all living cells
- defense against oxidative damage due to oxygen metabolism, and redox signaling using molecules like hydrogen peroxide and nitric oxide (2)
- In cancer treatment: is essential for cell growth and survival, it is a good target for anti-tumor therapy (4)
- In cardiomyopathy: two mutations in the TrxR2 gene are found in patients diagnosed with DCM and not in a control population(control oxidative damage in <u>cardiac myocytes</u>) (3)
- 1. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem 2000;267:6102–6109
- 2. Meyer, Yves; Bob B. Buchanan, Florence Vignols, and Jean-Philippe Reichheld (2009). "Thioredoxins and glutaredoxins: unifying elements in redox biology". Annual Reviews Genetics 43: 335–367
- 3. Hashemy SI, Ungerstedt JS, Zahedi Avval F, Holmgren A (April 2006). "Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase". J. Biol. Chem. 281 (16): 10691–10697
- 4. Nilsonne G, Sun X, Nyström C, Rundlöf AK, Potamitou Fernandes A, Björnstedt M, Dobra K (September 2006). "Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress". *Free Radic. Biol. Med.* **41** (6): 874–885.

Iodothyronin Deiodinases

- three enzymes: types 1, 2, and 3 (1)
- thyroid hormone metabolism (3)
- regulated (D2) stability in response to changes in iodine supply, to cold exposure, and changes in thyroid gland function (2)


1.Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev 2002;23:38–89.

2. Gereben B, Goncalves C, Harney JW, Larsen PR, Bianco AC. Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol. Endocrinol 2000

3.Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet 2005;37:1247–1252.

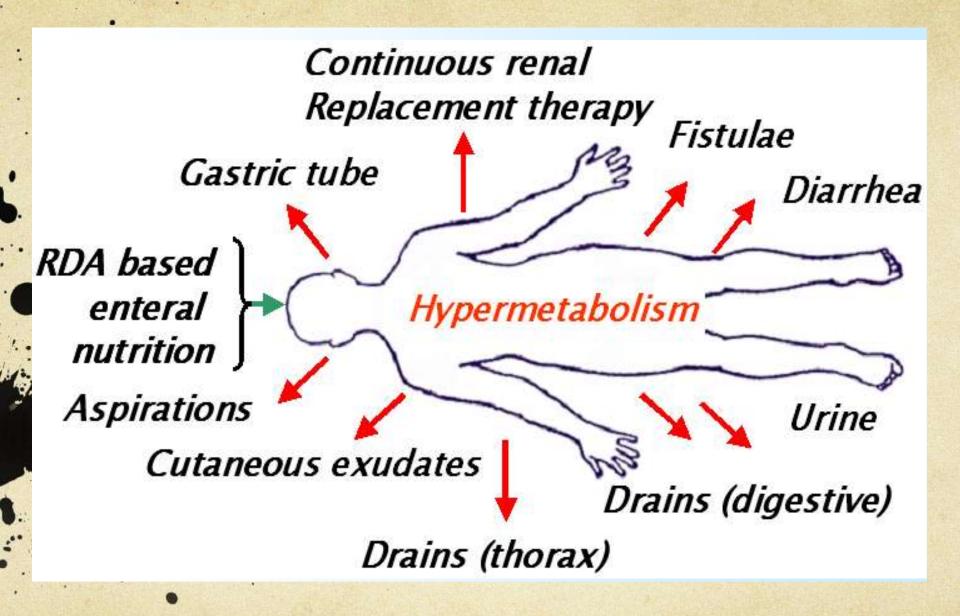
Selenoproteins

H	- relatively high in early stages of embryonic development	Р	 Se transporter glutathione peroxidase activity, heparin binding, and heavy metal ion complexation important defense against heavy metals lower circulating Sel P during inflammatory conditions like sepsis and Crohn's disease
I	- involved in a phospholipid biosynthesis pathway	R	- protection from neurodegeneration , lens cell viability, and oxidative damage during aging
K	- localized to the endoplasmic reticulum membrane, human heart - function of Sel K remains unclear	S	 participate in the removal of misfolded proteins from the ER lumen for degradation and to protect cells from oxidative damage and ER stress-induced apoptosis associated with genetic variations in Sel S : cardiovascular disease and stroke, preeclampsia, rheumatoid arthritis, and gastric cancer
Μ	- role for this selenoprotein in limiting the development of cancer	Τ	- biological role for Sel T in calcium mobilization ?
N	 a transmembrane protein localized to the ER membrane high expression of Sel N in fetal tissue and proliferating cells are suggestive role in early muscle formation 	V	- potential roles of Sel V in male reproductive biology
0	- no information regarding its tissue distribution, subcellular location, or physiological role	W	- functions in muscle growth and differentiation by protecting the developing myoblasts from oxidative stress

Selenium status varies by country and corresponds to dietary selenium intake and dietary supplements.

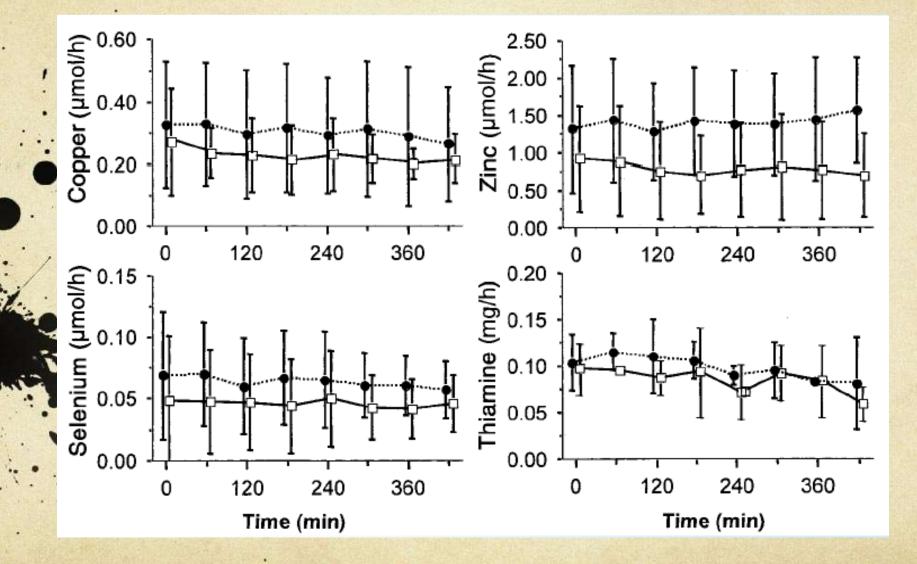
- in the USA, 50% of the population takes dietary supplements

Rayman MP: Selenium and human health. Lancet 2012, 379:1256-1268.

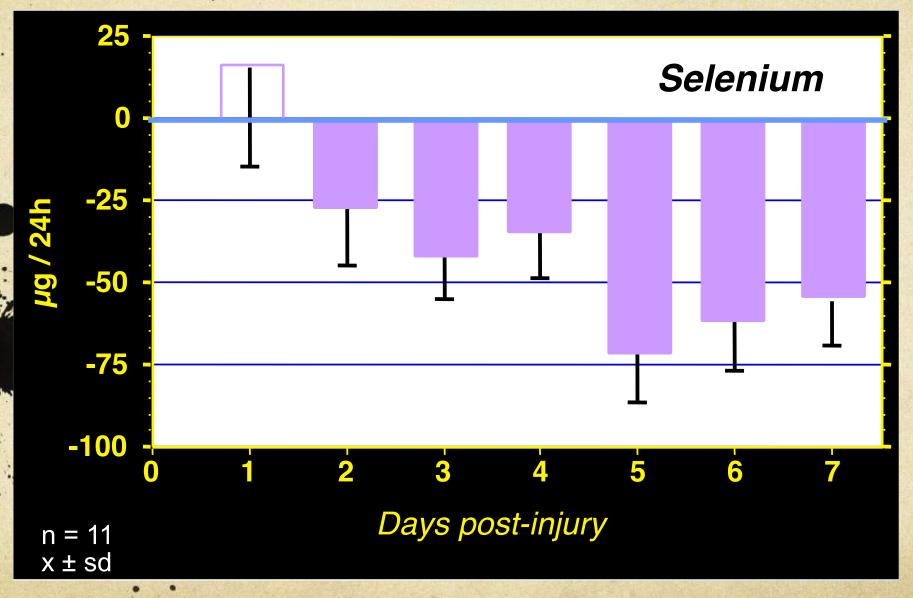

Impact on micronutrient status

Selenium in ICU

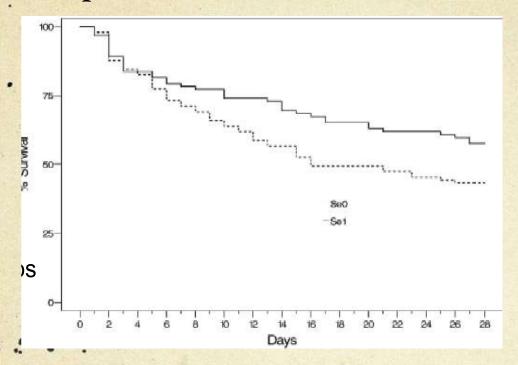
> Oxidative stress


Inflammation

• Organ failure


Berger, Negative balances - the causes in critically ill, NCP 21: 438, 2006

Micronutrients losses during CVVH


Berger MM et all., Amer.J Clin Nutr, 410, 2004

Se balance after major trauma

Berger MM et all., J Trauma 40:103, 1996

Matthias W. A. Angstwurm, Selenium in ICU SIRS – sepsis patients, Crit Care Med 2007 Vol. 35, No. 1

249 patients in severe sepsis or septic shock: 1000 mcg Se or placebo daily for 2 weeks after a loading dose

the estimated mean survival time was 19.7 days in Se1 patients compared with 16.4 days in the Se0 group (p < .0476)

- the absolute mortality reduction with adjuvant selenium treatment was 17.6% (p < .024; OR, 0.48; 95% CI, 0.25-0.91)

- the 28-day mortality rate was with 14.3%, significantly lower, in Selpatients

Matthias W. A. Angstwurm, Selenium in ICU SIRS – sepsis patients, Crit Care Med 2007 Vol. 35, No. 1

Secondary End Points

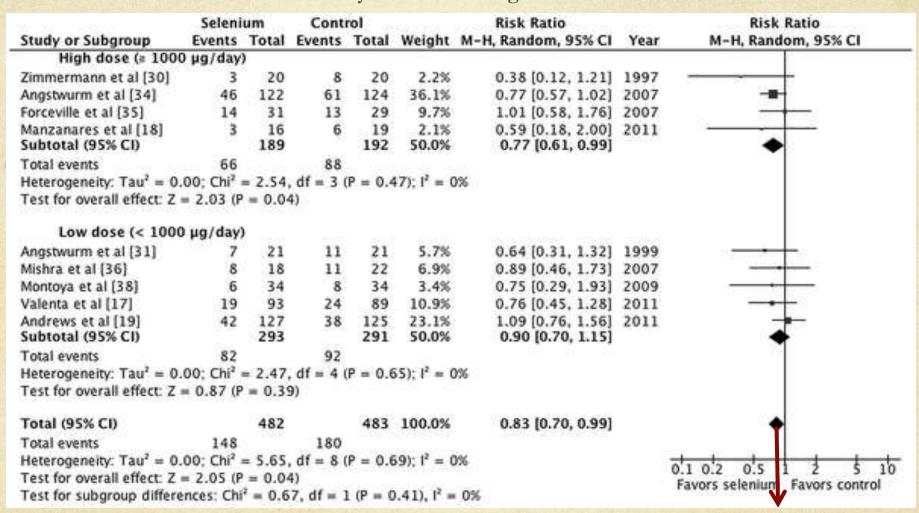
- APACHE II score decreased from day 1 to day 28 in the Se1 group (27.6%, p < .0002), comparable to the Se0 group (24.1%, p < .0002).</p>
- the incidence of ARDS also was not significantly different
 in Se1 (5.4%) and Se0 (4.1%) patients.
- the maximum serum Selenium concentrations were found on day 14

Disscution

selenoprotein P is rapidly generated (1), preventing
 endothelial cells from oxidative damage followed by a diminished activation

decreased tumor necrosis factor-\alpha-induced intercellular adhesion molecule and selectin expression (2)

GPx and thioredoxin reductase diminish the production of inflammatory prostaglandins and leukotrienes

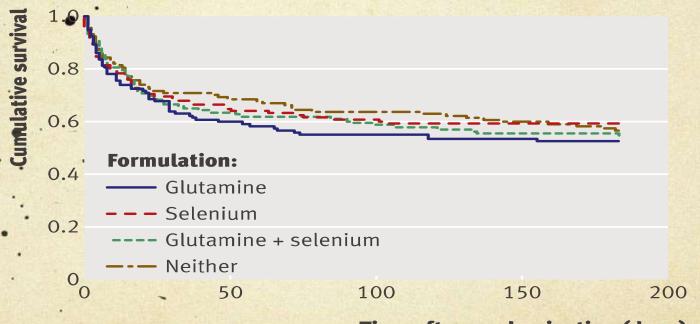

2. Miller S, Walker SW, Arthur JR, et al: Selen- ite protects human endothelial cells from oxidative damage and induces thioredoxin reductase. *Clin Sci* 2001; 100:543–550

^{1.}Schomburg L, Schweizer U, Kohrle J: Sele- nium and selenoproteins in mammals: Ex- traordinary, essential, enigmatic. *Cell Mol Life Sci* 2004; 61:1988–1995

Is there any evidence that selenium supplem___tation in ICU patients is beneficial?

Author and year	Critical illness	No. of patients	Daily Se/ebselen	Mort Se+	ality Se-	Included in meta-analysis [*]
Kuklinski 1991 ³¹	Pancreatitis	17	Se 500 g 8 days	0/8	8/9	Avenell Heyland (+/-)
Zimmerman 1997 ²¹	SIRS	40	Se 1000 g bolus + 1000 g 28 days	3/20	8/20	Avenell Heyland
Berger 1998 ²⁴	Burns	20	Se 159 g 8 days	1/10	0/10	Heyland
Angstwurm 1999 ¹²	Sepsis/SIRS	42	Se 535 g for 3 days then reducing	7/21	11/21	Avenell Heyland
Porter 1999 ²⁷	Trauma	18	Se 200 g ? days	0/9	0/9	Heyland
Berger 2001 ^{28, 29**}	Trauma	32	Se 500 g 5 days	2/20	1/12	Heyland
Berger 2001 ^{28**}	Trauma	21	Se 500 g 5 days	2/9	1/11	Avenell
Berger 2004*** ²⁶	Burns	21	Se 380 g 14-21 days	1/11	1/10	Heyland
Lindner 2004 ³³	Pancreatitis	70	Se 2000 g bolus + 1000 g 7 days	5/35	3/35	Avenell
Mishra 2007 ¹³	Sepsis/SIRS	40	Se 474 g for 3 days then reducing	11/18	15/22	Avenell
Forceville 2007 ²²	Septic shock	60	Se 4000 g on first day, then 1000 g/day 9 days	14/31	13/29	No
Angstwurm 2007 ¹⁴	Sepsis/SIRS	249	Se 1000 g bolus then 1000 g/day 14 days	46/116	61/122	Avenell Heyland
		The state of the state of the	The second second second second	1653 9 20		

Forest plot comparing mortality among selenium-treated patients to controls by treatment dosages.



Huang T-S, Shyu Y-C, Chen H-Y, Lin L-M, et al. (2013) Effect of Parenteral Selenium Supplementation in Critically Ill Patients: A Systematic Review and Meta-Analysis. PLoS ONE 8(1): e54431. doi:10.1371/journal.pone.0054431 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0054431

RESEARCH

Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients

Peter J D Andrews, professor of critical care, consultant,¹² Alison Avenell, clinical senior lecturer,³ David W Noble, consultant,⁴ Marion K Campbell, director,³ Bernard L Croal, consultant,⁵ William G Simpson, consultant,⁵ Luke D Vale, professor of health technology assessment,^{3,6} Claire G Battison, trial manager,¹ David J Jenkinson, research fellow in medical statistics,³ Jonathan A Cook, methodologist³ and the SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial) Trials Group

Time after randomisation (days)

parenteral nutrition supplemented with selenium for ≥5 days - reduction in new infections

Costa et al. Critical Care 2014, **18**:R92 http://ccforum.com/content/18/3/R92

RESEARCH

Open Access

Erythrocyte selenium concentration predicts intensive care unit and hospital mortality in patients with septic shock: a prospective observational study

Nara Aline Costa^{1*}, Ana Lúcia Gut¹, José Alexandre Coelho Pimentel², Silvia Maria Franciscato Cozzolino², Paula Schmidt Azevedo¹, Ana Angélica Henrique Fernandes³, Bertha Furlan Polegato¹, Suzana Erico Tanni¹, Rafael Dezen Gaiolla¹, Leonardo Antonio Mamede Zornoff¹, Sergio Alberto Rupp de Paiva¹ and Marcos Ferreira Minicucci¹

Key messages

Erythrocyte selenium concentration is a predictor of

- ICU and hospital mortality in patients with

septic - not due to influence on GPx1 activity

Costa et al. Critical Care 2014, 18:R92 http://ccforum.com/content/18/3/R92

Products sodium selenite pentahidrat

Decan (Baxter, Aquettant) 153µg/40ml Microsol Selenium (Boiron) 40µg/vial Nonan (Baxter, Aquettant) 40µg/40ml Tracitrans (Fresenius) 105,2µg/40ml Tracutil (B.Braun) 78,9µg/10ml Addamel (Fresenius) 32µg/10ml

Recommended Daily Allowance (RDA) of selenium is 60 µg for women and 75 µg for men/ day

The World Health Organisation suggests 40 μ g/day of selenium is necessary to prevent disease

in the UK, current intake is estimated at 34 µg/day

1.Expert group on vitamins and minerals. Safe upper levels of vitamins and minerals. Food Standards Agency London 2003: 232. http://cot.food.gov.uk/pdfs/vitamin2003

What is the optimal dose of selenium for supplementation on the ICU?

There may be a benefit from supplementing parenteral nutrition administered during critical illness with 500 µg of selenium daily for at least five days

- the safe upper limit for short term supplementation is 1,000 μ g/day - for long-term supplementation is 400-550 μ g/day

^{1.} Peter J D Andrews et all., Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients, BMJ 2011;342:d1542

^{2.} Selenase® biosyn product literature http://www.pharmapal.com/ pharmapal/pdf/selenase.pdf Accessed December 2008.

Products sodium selenite pentahidrat Decan (Baxter, Aquettant) 153µg/40ml Microsol Selenium (Boiron) 40µg/vial Nonan (Baxter, Aquettant) 40µg/40ml Tracitrans (Fresenius) 105,2µg/40ml Tracutil (B.Braun) 78,9µg/10ml Addamel (Fresenius) 32µg/10ml

NDC 0517-6510-25 SELENIUM NJECTION Selenium 400 mcg/10 mL (40 mcg/mL)

SINGLE DOSE VIAL Trace Element Additive FOR IV USE AFTER DILUTION PRESERVATIVE FREE

AMERICAN REGENT, INC. SHIRLEY, NY 11967

Selenium Trace Element, 40 mcg/mL, 10mL Vial

Table 2: Selenium supplementation studies in critically ill patients								
Author	Supplementat		Patients	No. of patients	Results			
Zimmerman et al.[117] 1997	1000 µg/day N	selenite IV vs no selenium.	SIRS+organ failure	40	Se supplementation reduced mortality.			
Forceville et al. ^[61] 1998	40 µg/day Na-s + 500 mg Vit C	enite+11.2IU Vit E /	Adult ICU patients	134	3-fold increase in morbidity and mortality in patients with low selenium concentrations.			
				1.1.1.1.1.1	Efficacy of Se supplementation needs further investigation.			
Berger <i>et al.</i> ^[116] 1998		+40.4 μmol copper s 32 μg selenium	Major burn	20	Significant decrease in bronchopneumonia infection and shorter hospital stay with trace element supplementation.			
Satio <i>et al.</i> [128] 1998		twice daily orally	Subarachnoid hemorrhage	286	Ebselen reduced brain damage and may be a promising neuroprotective agent.			
Angstwurm <i>et al</i> . ^[118] 1999	535 μg/day Na then 285 μg (3 (3 days) vs 35	ays), then 155 μ g	SIRS+APACHE>15	42	Se replacement seems to improve clinical outcome and reduce incidence of acute renal failure requiring hemodialysis.			
Porter <i>et al.</i> ^[114] 1999	50 μ g q6h sele VitC, 8 gm N-a	um IV+400IU Vit E, 100 mg tylcysteine q6h orally	Surgical ICU trauma patients	18	Antioxidant supplementation was associated with fewer infectious complications and fewer organ dysfunctions.			
Berger <i>et al.</i> ^[113] 2001	500 µg Na-sele 500 µg Na-sele +13 mg zinc Placebo	te only IV te +150 mg α-tocopherol	Critically ill trauma patients	31	Earlier normalization of T4 and reverse T3 plasma levels with Se supplementation.			
Berger <i>et al.</i> ^[128] 2002		+ 59 μ mol copper+574 μ mol	Burn	17	Not estimable			
Andrews <i>et al.</i> ^[128] 2004	Glutamine con	ning and non-glutamine teral nutrition with or ite	ICU patients requiring parenteral nutrition	500	Not available-personal communication			
Angstwurm <i>et al.</i> ^[129] 2004	500 µg/day Na	elenite (3 days), I25 μg (3 da <mark>y</mark> s) IV	ICU patients with nonthyroidal illness	41	Se supplementation in patients with nonthyroidal illness improved morbidity.			
Mishra <i>et al.</i> ^[127] 2006	(3 days), 158 µ	elenite (3 days), 316 µg (3 days), then 31.6 µg/day IV	Severe sepsis	40	Se supplementation did not reduce oxidative damage or requirement for renal replacement therapy			
Angstwurm <i>et al</i> . 2007 ^[126]		om the beginning selenite IV vs placebo	Severe SIRS, sepsis and septic shock	249	Se supplementation reduced mortality in patients with severe sepsis and septic shock.			

Download free from <u>www.ijccm.org</u>

Alaa Salama, Yasser Sakr, Konrad Reinhart, The role of selenium in critical illness: Basic science and clinical implications, Indian J Crit Care Med July-September 2007 Vol 11 Issue 3

Normal value

0-3 mo: 18-64 μg/L 4-11 mo: 32-101 μg/L 1-5 y : 58-116 μg/L 6-16 y : 69-121 μg/L > 16 y: 74-139 μg/L

Mayo Clinic, Mayo Medical Laboratories. Test Catalog. Selenium, Serum. www.mayomedicallaboratories.com. Ref Type: Internet Communication

For optimal selenoprotein activity = $100 \mu g/L$

EU average is 79 μ g/L (1)

< 40 µg/L - Selenium defficit - loss of gluthation peroxidases activity

1.Rayman MP. Dietary selenium: time to act. BMJ 1997; 314: 387-88.

Selenium monitoring – plasma When ?

Sepsis, septic shock **Burns** Trauma pancreatitis **TPN CVVH**

Warning !!!!!!

> 2.400µg/day TOXIC for human (1)

dose above 500–800 µg/day selenium should not be administered in routine practice in ICU patients (2)

1. Laboratory Corporation of America. Directory of Services and Interpretive Guide. Selenium, Blood. www.labcorp.com 2010. Ref Type: Internet Communication

2.. Xavier Forceville et all. Effects of high doses of selenium, as sodium selenite, in septicshock, Critical Care 2007: Vol 11 No 4

Conclusions - Se

- essential for its antioxidant function in critically ill patients
- \rightarrow dose of 500 µg/day seems to be safe and effectiv
- supplementation is inexpensive
- For ICU patients, in whom the literature suggests it should be supplemented parenterally
- reduce mortality rate in ICU

OKIOBEREST

2011A