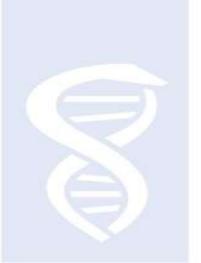
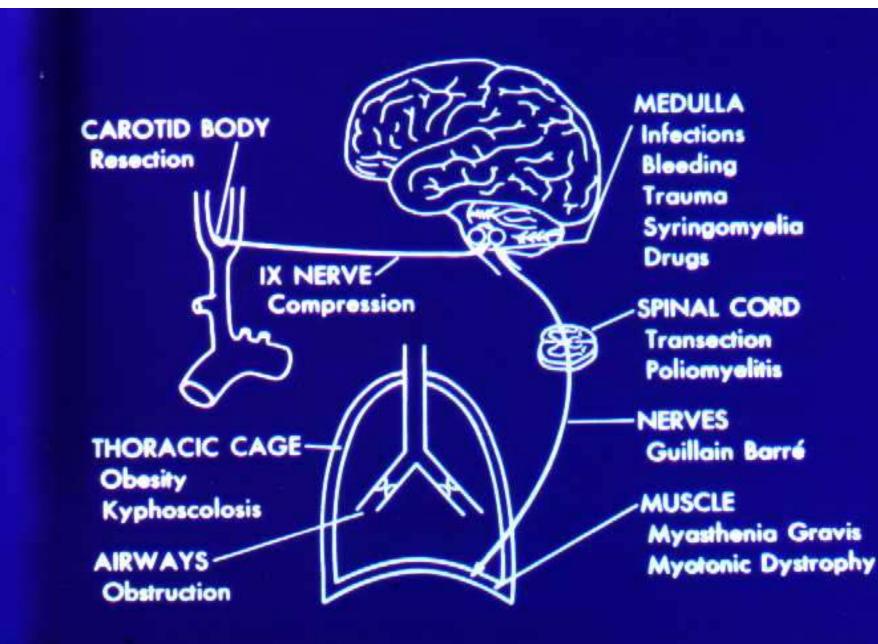


Respiratory failure - intensive care management


Alexandra Lazar


University of Medicine and Pharmacy of Tîrgu Mureş

- Respiratory failure is a syndrome of inadequate gas exchange due to dysfunction of one or more essential components of the respiratory system
- Chest wall (including pleura and diaphragm)
- Airways
- Alveolar- capillary units
- Pulmonary circulation
- Nerves
- CNS or Brain Stem
 CEEA 2018- Targu Mures

UNIVERSITATEA DE MEDICINĂ ȘI FARMACIE TÎRGU MUREȘ

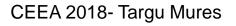
HYPOXEMIC RESPIRATORY FAILURE(TYPE 1)

- PaO₂ <60mmHg with normal or low PaCO₂ \rightarrow normal or high pH
- Most common form of respiratory failure
- Lung disease is severe to interfere with pulmonary O₂ exchange, but over all ventilation is maintained
 Physiologic causes: V/Q mismatch and shunt

Causes

- Pneumonia
- Cardiogenic pulmonary edema
- Pulmonary edema due to increased hydrostatic pressure
- Non-c ardiogenic pulmonary edema
- Pulmonary edema due to increased permeability
- Acute respiratory distress syndrome (ARDS)
- Pulmonary embolism
- Atelectasis
- Pulmonary fibrosis

Respiratory failure Type II

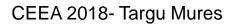

- Hypercapnic (PaCO2 >45)
- Failure to exchange or remove carbon dioxide
- Decreased alveolar minute ventilation (VA)

 Often accompanied by hypoxemia that corrects with supplemental oxygen

Causes

- Respiratory centre (medulla) dysfunction
- Drug over dose, CVA, tumor, hypothyroidism,central hypoventilation
- Neuromuscular disease Guillain-Barre, Myasthenia Gravis, polio, spinal injuries
- Chest wall/Pleural diseases
 - kyphoscoliosis, pneumothorax, massive pleural effusion
- Upper airways obstruction tumor, foreign body, laryngeal edema
- Peripheral airway disorder asthma, COPD

Type III Respiratory Failure: Perioperative respiratory failure

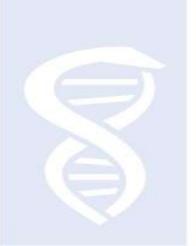


- Increased atelectasis due to low functional residual capacity (FRC) in the setting of abnormal abdominal wall mechanics
- Often results in type I or type II respiratory failure
- Can be ameliorated by anesthetic or operative technique, posture, incentive spirometry, post-o perative analgesia, attempts to lower intra- abdominal pressure

- Inadequate post- o perative analgesia, upper abdominal incision
- Obesity, ascites
- Pre- operative tobacco smoking
- Excessive airway secretions

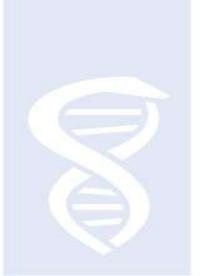
Type IV Respiratory Failure: Shock

• Type IV describes patients who are intubated and ventilated in the process of resuscitation for shock


 Goal of ventilation is to stabilize gas exchange and to unload the respiratory muscles, lowering their oxygen consumption

Causes

- Cardiogenic shock
- Septic shock
- Hypovolemic shock

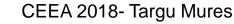


Respiratory failure may be

- Acute
- Chronic
- Acute on chronic

E.g.: acute exacerbation of advanced COPD

Clinical and Laboratory Manifestation (non-specific and unreliable)


Cyanosis

- bluish color of mucous membranes/skin indicate hypoxemia
- Unoxygenated hemoglobin 50 mg/L
- not a sensitive indicator
- Dyspnea
- secondary to hypercapnia and hypoxemia
- Paradoxical breathing
- Confusion, somnolence and coma
- Convulsions

Clinical Manifestation

- Circulatory changes
 - tachycardia, hypertension, hypotension
- Polycythemia
 - chronic hypoxemia erythropoietin synthesis
- Pulmonary hypertension
- Cor-pulmonale or right ventricular failure

Laboratory Workup

ABG

- Quantifies magnitude of gas exchange abnormality
- Identifies type and chronicity of respiratory failure

Complete blood count

- Anemia may cause cardiogenic pulmonary edema
- Polycythemia suggests may chronic hypoxemia
- Leukocytosis, a left shift, or leukopenia suggestive of infection
- Thrombocytopenia may suggest sepsis as a cause

Laboratory Workup

Cardiac serologic markers

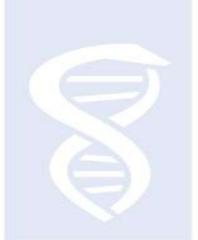
- Troponin, Creatine kinase- MB fraction (CK- MB)
- B-type natriuretic peptide (BNP)

Microbiology

- Respiratory cultures: sputum/tracheal
- aspirate/broncheoalveolar lavage (BAL)
- Blood, urine and body fluid (e.g. pleural) cultures

CEEA 2018- Targu Mures

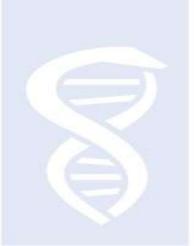
EDICINA SI FARMACIE


TIRGU MURES

Diagnostic Investigations

Chest radiography

 Identify chest wall, pleural and lung parenchymal pathology; and distinguish disorders that cause primarily V/Q mismatch (clear lungs) vs. Shunt (intra- pulmonary shunt; with opacities present)


Diagnostic Investigations

Electrocardiogram

Identify arrhythmias, ischemia, ventricular dysfunction

Echocardiography

Identify right and/or left ventricular dysfunction

Pulmonary function tests/bedside spirometry

- Identify obstruction, restriction, gas diffusion abnormalities
- May be difficult to perform if critically ill

Bronchoscopy

- Obtain biopsies, brushings and BAL for histology, cytology and microbiology
- Results may not be available quickly enough to avert respiratory failure
- Bronchoscopy may not be safe in the critically ill

Respiratory Failure: Management

Hypoxemia may cause death in RF

Primary objective is to reverse and prevent hypoxemia

Secondary objective is to control PaCO₂ and respiratory acidosis

Treatment of underlying disease
Patient's CNS and CVS must be monitored and treated

Respiratory Failure: Management

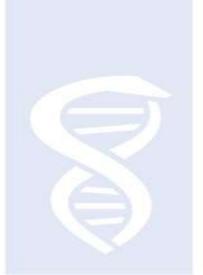
ABC's

- Ensure airway is adequate
- Ensure adequate supplemental oxygen and assisted ventilation, if indicated
- Support circulation as needed

Respiratory Failure: Management

Treatment of a specific cause when possible *Infection*

• Antimicrobials, source control


Airway obstruction

• Bronchodilators, glucocorticoids

Improve cardiac function

- Positive airway pressure, diuretics, vasodilators,
- morphine, inotropy, revascularization

Oxygen Therapy

titration based on SaO₂, PaO₂ levels and PaCO₂

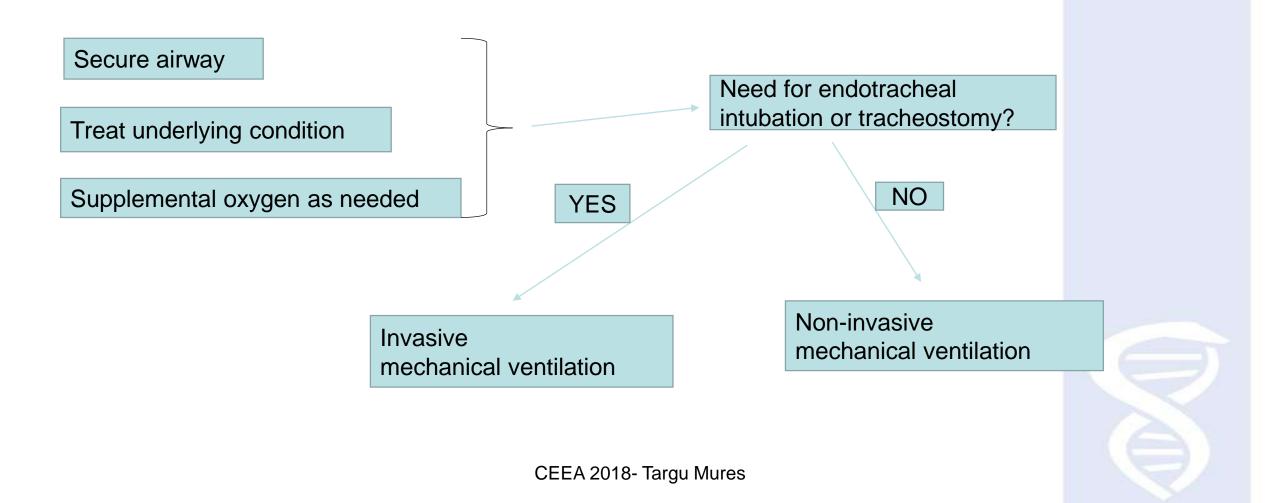
Goal is to prevent tissue hypoxia

Tissue hypoxia occurs (normal Hb & C.O.) venous $PaO_2 < 20 \text{ mmHg or } SaO_2 < 40\%$ arterial $PaO_2 < 38 \text{ mmHg or } SaO_2 < 70\%$

 Increase arterial PaO₂ > 60 mmHg(SaO₂ > 90%) or venous SaO₂ > 60%

O₂ dose either flow rate (L/min) or FiO₂ (%)

Mechanical ventilation



- Non-invasive (if patient can protect airway and is hemodynamically stable)
- Mask: usually orofacial to start
- Invasive
- Endotracheal tube (ETT)
- Tracheostomy if upper airway is obstructed

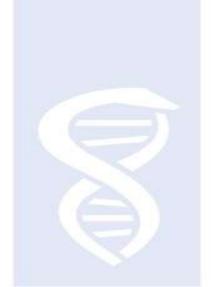
Respiratory Failure

Indications for Mechanical Ventilation

- Cardiac or respiratory arrest
- Tachypnea or bradypnea with respiratory fatigue or impending arrest
- Acute respiratory acidosis
- Refractory hypoxemia (when the PaO2 could not be maintained above 60 mm Hg with inspired O 2 fraction (FIO2)>1.0)
- Inability to protect the airway associated with depressed levels of consciousness

- Shock associated with excessive respiratory work
- Inability to clear secretions with impaired gas exchange or excessive respiratory work
- Newly diagnosed neuromuscular disease with a vital capacity <10-15 mL/kg
- Short term adjunct in management of acutely increased intracranial pressure (ICP)

Invasive vs. Non- invasive Ventilation


Consider non- invasive ventilation particularly in the following settings:

- COPD exacerbation
- Cardiogenic pulmonary edema
- Obesity hypoventilation syndrome
- Noninvasive ventilation may be tried in selected patients with asthma or non-cardiogenic hypoxemic respiratory failure

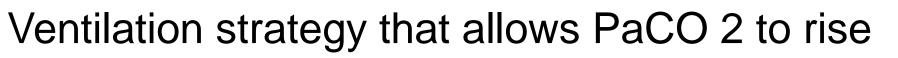
Goals of Mechanical Ventilation

- Improve ventilation by augmenting respiratory rate and tidal volume
- Assistance for neural or muscle dysfunction
- Sedated, comatose or paralyzed patient
- Neuropathy, myopathy or muscular dystrophy
- Intra-operative ventilation
- Correct respiratory acidosis, providing goals of lung protective ventilation are met
- Match metabolic demand
- Rest respiratory muscles CEEA 2018- Targu Mures

Goals of Mechanical Ventilation

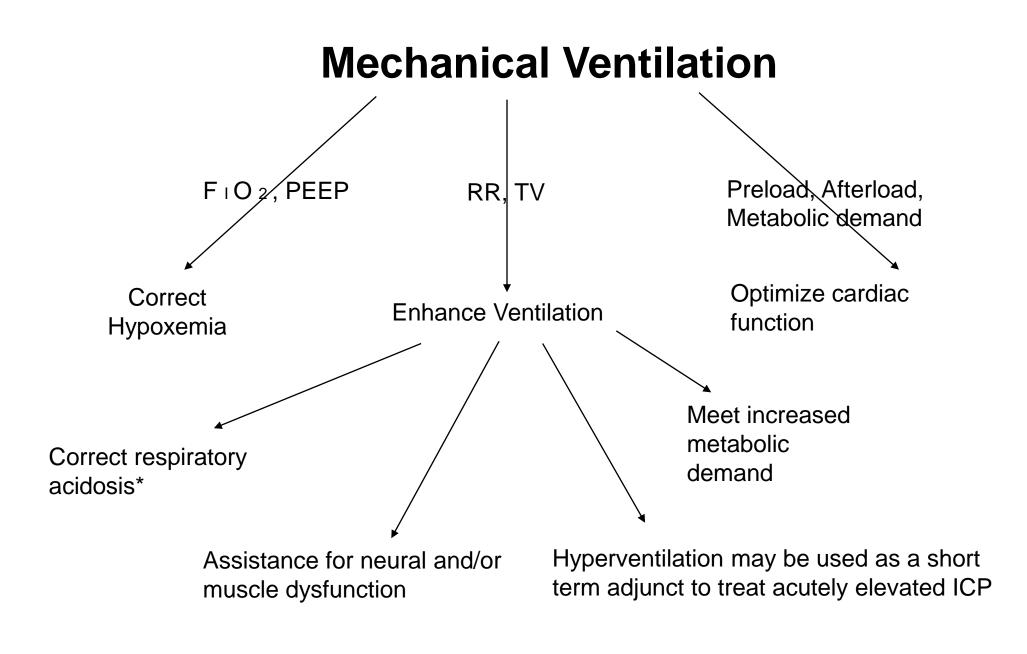
Correct hypoxemia

- High F IO 2
- Positive end expiratory pressure (PEEP)


Improve cardiac function

- Decreases preload
- Decreases afterload
- Decreases metabolic demand

Permissive Hypercapnia



by accepting a lower alveolar minute ventilation to avoid specific risks:


- Dynamic hyperinflation ("auto- peep") and
- barotrauma in patients with asthma
- Ventilator-associated lung injury, in patients with, or at risk for ARDS

III Contraindicated in patients with increased intracranial pressure such as head trauma

CEEA 2018- Targu Mures

MEDICINĂ ȘI FARMACIE

TIRGU MURES

Other Issues to Consider When Initiating Mechanical Ventilation

Do not wait for frank respiratory acidosis especially with evidence of:

- Inability to protect airway
- Persistent or worsening tachypnea (respiratory rate >35/minute)
- Respiratory muscle fatigue
- Always consider risks and benefits of initiation and continuation of mechanical ventilation

Other Issues to Consider When Initiating Mechanical Ventilation

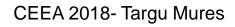
- UNIVERSITATEA DE MEDICINĂ ȘI FARMACIE TÎRGU MUREȘ
- elevate the head of the bed >30° and use ulcer and DVT prophylaxis, unless contraindicated
- lung protective ventilation strategy for patients with ARDS (TV ~ 6 ml/kg ideal body weight, Plat pressure < 30 cmH2 O)
- Modify ventilator settings primarily to achieve patient ventilator synchrony.
- use the least amount of sedation required to achieve comfort and avoid unnecessary neuromuscular blockade

Other Issues to Consider When Initiating Mechanical Ventilation

- Monitor patient comfort, gas exchange, mechanics, and ventilator waveforms daily, or more frequently if indicated
- When minimal settings are required for oxygenation (FI O2 <55%, PEEP<8) and patient is hemodynamically stable, perform a spontaneous breathing trial daily

Treatment of the underlying causes

- After correction of hypoxemia, hemodynamic stability
- Antibiotics
 - Pneumonia
 - Infection
- Bronchodilators (COPD, BA)
 - Salbutamol
 - reduce bronchospasm
 - airway resistance



Treatment of the underlying causes

Anticholinergics (COPD, BA)

- Ipratropium bromide
 - inhibit vagal tone
 - relax smooth muscles
- Theophylline (COPD, BA)
 - improve diaphragmatic contraction
 - relax smooth muscles
- Diuretics (pulmonary edema)
 - Furosemide

Treatment of the underlying causes UNIVERSITATEA DE MEDICINĂ ȘI FARMA

Methyl prednisone (COPD, BA, acute esinophilic pn)


Reverse bronchospasm, inflammation

Fluids and electrolytes

Maintain fluid balance and avoid fluid overload

IV nutritional support

- To restore strength, loss of ms mass
- Fat, carbohydrate, protein

Treatment of the underlying causes

- Physiotherapy
 - Chest percussion to loosen secretion
 - Suction of airways
 - Help to drain secretion
 - Maintain alveolar inflation
 - Prevent atelectasis, help lung expansion

Complications of ARF

Pulmonary

- Pulmonary embolism
- barotrauma
- pulmonary fibrosis (ARDS)
- Nosocomial pneumonia
- Cardiovascular
 - Hypotension, ↓COP
 - Arrhythmia
 - MI, pericarditis
- GIT
 - Stress ulcer, ileus, diarrhea, hemorrhage

Infections

- Nosocomial infection
- Pneumonia, UTI, catheter related sepsis
- Renal
 - ARF (hypoperfusion, nephrotoxic drugs)
 - Poor prognosis
- Nutritional
 - Malnutrition, diarrhea hypoglycemia, electrolyte disturbances