Management of septic cardiomyopathy

János Gál

Semmelweis University,

Dpt. of Anaesthesiology and Intensive Therapy, Budapest

The problem in focus

- Incidence of sepsis is increasing
- Severe sepsis and septic shock are leading cause of death in ICU
- Septic patients developing myocardial dysfunction have significantly higher mortality (70%) than those without cardiovascular impairment (20%)

Topics

- Clinical manifestation of sepsis induced cardiac dysfunction
- Pathophysiological mechanisms
- Novel therapeutic strategies?
- From bench to bedside

Clinical manifestation of sepsis induced cardiac dysfunction

- A not adequately enhanced cardiac output
 - Decreased contractility
 - Impaired response to fluid therapy
 - Ventricular dilation
- Autonomic dysfunction
- Reduced heart rate variability
- Impaired baro- and chemoreflex sensitivity

Warm or cold shock?

- Early sepsis: decreased iv volume leads to low cardiac output
- Volume resuscitated patients develop high cardiac output due to low systemic vascular resistence
- Cold shock = inadequate volume resuscitation?

The extent of septic cardiomyopathy can be more correctly quantified by taking the afterload into consideration, thus measuring the afterload-related cardiac performance.

Werdan K et al. Clin Res Cardiol (2011) 100:661–668

Mechanisms of myocardial dysfunction in sepsis

Hypothesis of global myocardial ischemia

- High coronary flow, decreased myocardial O₂ consumption
- No evidence of significant myocardial necrosis
- Functional rather than anatomical abnormalities?

Cunnion RE et al Circulation 1986;73:637-644

Mechanisms of myocardial dysfunction in sepsis

Zanotti-Cavazzoni SL et al. Curr Opin Crit Care 2009;15:392-397

Preincubation of beating neonatal rat cardiomyocytes in culture with TNF-α blocks βadrenoceptor-mediated increases in pulsation amplitude

Standard mediumStandard mediumPre-Stimulation+ ISOPROTERENOL

Standard medium Post-Stimulation

Muller-Werdan U et al.Exp Clin Cardiol 2006;11(3):226-236.

Blocking myocardial suppressant factors (TNF-α, IL-1β), the same as attempts to inhibit NO production could not prove any benefit.

Treatment	CI	SVR	LVSWI
Endotoxin antibody (HA-1A)	Ø	Ø	Ø/↓
TNF- α antibody/soluble receptors	Ø	\emptyset/\uparrow	Ø/ ↑
Hemofiltration	Ø	\uparrow	Ø
Plasma separation	Ø	Ø	Ø
Hydrocortisone	Ø	\uparrow	Ø
NO synthase inhibitors	Ø	\uparrow	$\varnothing/\downarrow/\uparrow$
Methylene blue	\varnothing/\downarrow	\uparrow	\uparrow
Pentoxifylline	Ø	Ø	Ø
Hemoperfusion/endotoxin absorption	\downarrow	\uparrow	Ø

Muller-Werdan U et al.Exp Clin Cardiol 2006;11(3):226-236.

Role of levosimendan in septic heart failure

- Theoretical advantages compared with dobutamine:
 - does not increase oxygen demand
 - correction of calcium desensitisation
 - reduction in apoptosis
 - reduction in inflammatory response
- May exacerbate hypotension (PVR↓)
- RCTs required

RCTs with levosimendan use in septic shock

Study, year (ref)	Population	N	Levosimendan dose (length of infusion)	Comparator dose (length of infusion)	Definition of septic shock and/or inclusion criteria	Clinical outcome(s) with levosimendan	Follow up
Alhashemi 2009 ⁽⁵⁵⁾	Severe sepsis/ septic shock	42	0.05- 0.2 μg/kg/min (24 hours)	Dobutamine 5-20 µg/kg/min (24 hours)	Trial drugs increased until ScvO ₂ ≥70%. Rescue therapy with noradrenaline	ICU mortality was less (48% vs 62%). CI was less in the levosimendan group and both required similar noradrenaline rescue therapy	ICU length of stay
Morelli 2006 ⁽⁵⁴⁾	ARDS and septic shock	35	0.2 μg/kg/min	Placebo	Septic shock (ACCP/SCCM) and ARDS	The combination of inotropic and pulmonary vasodilating effects of levosimendan may be beneficial with RV failure in patients with ARDS and sepsis	24 hours
Morelli 2005 ⁽⁴⁵⁾	Refractory septic shock	28	0.2 μg/kg/min	Dobutamine 5 µg/kg/min	LVEF >45%, PCWP ≥12mmHg Not fluid responsive	Improved haemodynamics and regional perfusion under conditions where dobutamine is no longer efficacious	30 days

Statins?

- Apoptosis contributes to septic cardomyopathy
 - increased release of caspases,
 - mitochondrial cytochrome c
- Statins influencing the process of apoptosis through their pleiotropic effects might turn out to be a potential therapy.

Buerke U et al. Shock 2008;29:497-503

Kopterides P et al. Clin Microbiol Infect 2009;15:325-334

THE LANCET Infectious Diseases For sepsis, the drugs don't work

www.thelancet.com/infection Vol 12 February 2012

- HA-1A; Centoxin; monoclonal antibody; withdrawn 1993
- Drotrecogin alfa; Xigris; activated protein C; withdrawn 2011
- AZD9773; CytoFab; TNF-antibody; withdrawn 2012 (F IIb)
- ASEPSIS Trial; atorvastatin 40 mg; sepsis progression↓? 2012
- EUPHRATES Trial; polimyxinB HP endotoxine elim. 2013
- OASIS Trial; talactoferrin alfa; immunmodulant protein 2014

Role of mechanical circulatory support (?)

- Use of ECMO is limited to refractory pediatric septic shock and/or respiratory failure (2C)
- IABP? LVAD **IABP** Reported leg ischaemia P(heterogeneity) = 0.38 relative risk n/N n/N 12 = 0% Thiele et al. 7/21 0/2014.32 (0.87-235.4) LVAD? Burkhoff et al. 4/19 2/14 1.47(0.31 - 6.95)Seyfarth et al. 1/13 0/13 3.00 (0.13-67.51) 12/53 2/47 Pooled 2.59 (0.75-8.97) 0.0001 0.01 100 10 000 Favours LVAD Favours IABP IABP LVAD 30-day mortality P(heterogeneity) = 0.83 n/N n/N relative risk $l^2 = 0\%$ LVAD IABP Reported bleeding P(heterogeneity) = 0.73 n/N nIN relative risk P = 0% 0.95(0.48 - 1.90)Thiele et al. 9/21 9/20 Thiele et al. 19/21 8/20 2.26 (1.30 - 3.94) 1.33 (0.57-3.10) Burkhoff et al. 9/19 5/14 Burkhoff et al. 8/19 2/14 2.95 (0.74-11.80) 6/13 Seyfarth et al. 6/13 1.00(0.44 - 2.29)27/40 10/34 Pooled 2.35(1.40 - 3.93)24/53 20/47 1.06 (0.68-1.66) Pooled 100 0.01 0.1 10 Favours LVAD Favours IABP 0.1 10 Favours IABP Favours LVAD **IABP** LVAD Reported fever or sepsis P(heterogeneity) = 0.10 relative risk n/N nIN P = 62.1% Thiele et al. 17/21 10/20 1.62 (1.00 - 2.63) 5/14 Burkhoff et al. 4/19 0.59(0.19 - 1.80)15/34 21/40 1.11 (0.43-2.90) Pooled Brierley J et al. Crit Care Med 2009;37:666-688 0.01 0.1 10 100 Favours LVAD Favours IABP

Cheng JM et al. Eur Heart J 2009;30:2102-2108

Changing conceptions: Volume therapy

- 1. Quantitative resuscitation 6-12 hours (CO)
- 2. Qualitative resuscitation (glycocalix)
- 3. De-resuscitation (oedema)

Hypervolemia could be as harmful as hypovolemia

Photo by Welsch U. Rehm M et al. Anaesthesiology 2004;100:1211-23

Changing conceptions: Vasoactive therapy

- Norepinephrine is first choice (1B)
- Epinephrine when additional agent is needed (2B)
- Dobutamin in case of myocardial dysfunction (high filling pressure, low CO, hypoperfusion) (1C)
- Vasopressin (0.03 U/min) can be added to NE, but never initial treatment (UG)
- Dopamine in highly selected patients (2C)
 - arrhythmia

Dellinger RP et al. Crit Care Med 2013, 41:2:580-637

Sepsis induced cardiac dysfuntion

- Leads to significantly higher mortality
- Understanding of the complex mechanism leads to potential novel therapeutic targets
- Novel drugs and mechanical circulatory support still have not brought break through
- What works: early and proper volume therapy, goal-directed vazopressor and inotropic support, infection source control.
 - What changed is not what to do, but how to do it properly?

